76 research outputs found

    Studies on two polyherbal formulations (ZPTO and ZTO) for comparison of their antidyslipidemic, antihypertensive and endothelial modulating activities

    Get PDF
    Background Cardiovascular disorders (CVDs) are the leading cause of disease burden worldwide. Apart from available synthetic drugs used in CVDs, there are many herbal formulations including POL-10 (containing 10 herbs), which have been shown to be effective in animal studies but POL-10 was found to cause tachycardia in rodents as its side effect. This study was designed to modify the composition of POL-10 for better efficacy and/or safety profile in CVDs. Methods To assess the antidyslipidemic, antihypertensive and endothelial modulatory properties of two herbal formulations, (ZPTO and ZTO) containing Z: Zingiber officinalis, P: Piper nigrum, T: Terminalia belerica and O: Orchis mascula, different animal models including, tyloxapol and high fat diet-induced dyslipidemia and spontaneously hypertensive rats (SHR) were used. Effect on endothelial function was studied using isolated tissue bath set up coupled with PowerLab data acquisition system. The antioxidant activity was carried out using DPPH radical-scavenging assay. Results Based on preliminary screening of the ingredients of POL-10 in tyloxapol-induced hyperlipidemic rats, ZPTO and ZTO containing four active ingredients namely; Z, P, T and O were identified for further studies and comparison. In tyloxapol-induced hyperlipidemic rats, both ZPTO and ZTO caused significant reduction in serum triglyceride (TG) and total cholesterol (TC). In high fat diet-fed rats, ZPTO decreased TC, low-density lipoproteins cholesterol (LDL-C) and atherogenic index (AI). ZTO also showed similar effects to those of ZPTO with additional merits being more effective in reducing AI, body weight and more importantly raising high-density lipoproteins. In SHR, both formulations markedly reduced systolic blood pressure, AI and TG levels, ZTO being more potent in reversing endothelial dysfunction while was devoid of cardiac stimulatory effect. In addition, ZTO also reduced LDL-C and improved glucose levels in SHR. In DPPH radical-scavenging activity test, ZTO was also more potent than ZPTO. Conclusion The modified formulation, ZTO was not only found more effective in correcting cardiovascular abnormalities than ZPTO or POL-10 but also it was free from tachycardiac side-effect, which might be observed because of the presence of Piper nigrum in ZPTO

    Regulation of inflammation in Japanese encephalitis

    Get PDF
    Uncontrolled inflammatory response of the central nervous system is a hallmark of severe Japanese encephalitis (JE). Although inflammation is necessary to mount an efficient immune response against virus infections, exacerbated inflammatory response is often detrimental. In this context, cells of the monocytic lineage appear to be important forces driving JE pathogenesis

    Toll-like receptor signaling and stages of addiction

    Get PDF
    Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Implications of NAD+ Metabolism in the Aging Retina and Retinal Degeneration

    No full text
    Nicotinamide adenine dinucleotide (NAD+) plays an important role in various key biological processes including energy metabolism, DNA repair, and gene expression. Accumulating clinical and experimental evidence highlights an age-dependent decline in NAD+ levels and its association with the development and progression of several age-related diseases. This supports the establishment of NAD+ as a critical regulator of aging and longevity and, relatedly, a promising therapeutic target to counter adverse events associated with the normal process of aging and/or the development and progression of age-related disease. Relative to the above, the metabolism of NAD+ has been the subject of numerous investigations in various cells, tissues, and organ systems; however, interestingly, studies of NAD+ metabolism in the retina and its relevance to the regulation of visual health and function are comparatively few. This is surprising given the critical causative impact of mitochondrial oxidative damage and bioenergetic crises on the development and progression of degenerative disease of the retina. Hence, the role of NAD+ in this tissue, normally and aging and/or disease, should not be ignored. Herein, we discuss important findings in the field of NAD+ metabolism, with particular emphasis on the importance of the NAD+ biosynthesizing enzyme NAMPT, the related metabolism of NAD+ in the retina, and the consequences of NAMPT and NAD+ deficiency or depletion in this tissue in aging and disease. We discuss also the implications of potential therapeutic strategies that augment NAD+ levels on the preservation of retinal health and function in the above conditions. The overarching goal of this review is to emphasize the importance of NAD+ metabolism in normal, aging, and/or diseased retina and, by so doing, highlight the necessity of additional clinical studies dedicated to evaluating the therapeutic utility of strategies that enhance NAD+ levels in improving vision
    corecore